First eigenvalue of a Jacobi operator of hypersurfaces with a constant scalar curvature
نویسندگان
چکیده
منابع مشابه
Second Eigenvalue of a Jacobi Operator of Hypersurfaces with Constant Scalar Curvature
Let x : M → Sn+1(1) be an n-dimensional compact hypersurface with constant scalar curvature n(n − 1)r, r ≥ 1, in a unit sphere Sn+1(1), n ≥ 5, and let Js be the Jacobi operator of M . In 2004, L. J. Aĺıas, A. Brasil and L. A. M. Sousa studied the first eigenvalue of Js of the hypersurface with constant scalar curvature n(n− 1) in Sn+1(1), n ≥ 3. In 2008, Q.-M. Cheng studied the first eigenvalue...
متن کاملHypersurfaces with Constant Scalar Curvature
Let M be a complete two-dimensional surface immersed into the three-dimensional Euclidean space. Then a classical theorem of Hilbert says that when the curvature of M is a non-zero constant, M must be the sphere. On the other hand, when the curvature of M is zero, a theorem of Har tman-Nirenberg [4] says that M must be a plane or a cylinder. These two theorems complete the classification of com...
متن کاملHypersurfaces with Constant Scalar Curvature in a Hyperbolic Space Form
Let M be a complete hypersurface with constant normalized scalar curvature R in a hyperbolic space form H. We prove that if R̄ = R + 1 ≥ 0 and the norm square |h| of the second fundamental form of M satisfies nR̄ ≤ sup |h| ≤ n (n− 2)(nR̄− 2) [n(n− 1)R̄ − 4(n− 1)R̄ + n], then either sup |h| = nR̄ and M is a totally umbilical hypersurface; or sup |h| = n (n− 2)(nR̄− 2) [n(n− 1)R̄ − 4(n− 1)R̄ + n], and M i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2008
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-08-09304-0